

Structured Spectral Graph Learning

for 3D Chest CT Volumes Multi-label Anomaly Classification

Theo Di Piazza

Carole Lazarus

Olivier Nempont

Loic Bousse

Motivations

Multi-label anomaly classification on 3D CT scans captures anomaly co-occurrence and provides a natural pretraining task for downstream applications.

Existing work

Local receptive fields of CNNs limit their ability to capture global contextual information across large 3D volumes.

Vision Transformers can be computationally expensive and often require extensive pre-training on large-scale datasets.

CT-Graph

We formally define a 3D CT scan as a structured graph, where each node represents a triplet of axial slices.

Nodes features interact through a spectral domain convolution, before being aggregated and given to a classification head.

We evaluate the impact of graph topology, edge weighting strategy and graph convolutional operator.

Dataset

► CT-RATE for train and evaluation

~21,000 unique patients

18 abnormalities extracted from reports

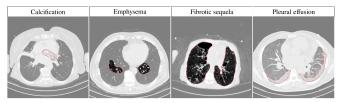
Non-contrasted 3D Chest Computed Tomography Volumes

▶ <u>RAD-ChestCT</u> for cross-dataset evaluation

~1,400 unique patients

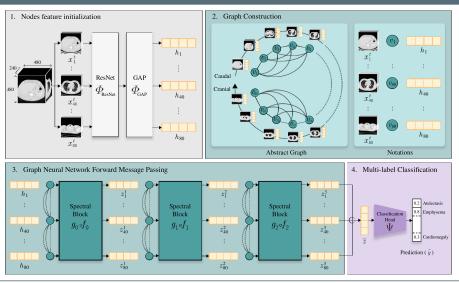
16 abnormalities shared with CT-RATE

Non-contrasted 3D Chest Computed Tomography Volumes



Axial slices of 3D CT Scans with anomalies contoured in red, illustrating distinc visual characteristics.

Method



Nodes feature initialization

Axial slices of the 3D CT Scan are grouped by triplets. Each triplet is given to a 2D ResNet, followed by a Global Average Pooling layer.

Graph construction

Each triplet of axial slices represents a node. An undirected edge is defined between 2 nodes, if they are separated by at most q triplet slices.

$$\mathcal{E} = \{(v_i, v_j) \mid |i - j| \le q\}$$

Edge weights are defined based on inter-slices distance.

$$w_{i,j} = 1 + \frac{1}{1 + dist(i,j)} = 1 + \frac{1}{1 + 3 \times |i-j| \times s_z}$$

Message passing

Nodes feature interact through Chebyshev convolutions, each followed by a FFN.

Classification

Nodes feature are averaged and given to a classification head to predict anomalies.

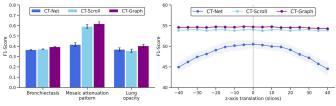
arXiv preprint

Quantitative results

Dataset	Method	F1-Score	AUROC	Accuracy
CT-RATE	Random Pred.	27.78 ± 0.51	49.88 ± 0.62	49.89 ± 0.31
	ViViT [2]	$49.91{\scriptstyle\pm0.28}$	$79.19{\scriptstyle\pm0.28}$	75.95 ± 0.71
	Swin3D [24]	$50.64 {\pm} 0.25$	79.94 ± 0.15	75.95 ± 0.25
	CT-Net [13]	$51.39{\pm0.50}$	$79.37{\pm0.27}$	77.37 ± 0.40
	CNN3D [1]	$52.92{\pm}1.08$	$81.47{\pm0.78}$	77.80 ± 0.37
	$\textbf{CT-Scroll} \; [11]$	$\underline{53.97} {\pm} 0.21$	$\underline{81.80}{\pm0.22}$	79.49 ± 0.45
	CT-Graph	$54.59 {\pm} 0.17$	$82.44 {\pm} 0.14$	78.66 ± 0.36
Rad-ChestCT	Random Pred.	35.91 ± 0.41	$49.68 {\pm} 0.55$	50.40 ± 0.32
	ViViT [2]	$48.59{\pm0.97}$	$67.83{\scriptstyle\pm0.38}$	$60.22{\pm}1.15$
	Swin3D [24]	$47.98{\pm}0.41$	$67.29{\pm0.23}$	$60.67 {\pm} 0.60$
	CT-Net [13]	$47.53{\pm}0.93$	$67.71{\scriptstyle\pm0.83}$	$60.05{\pm}1.93$
	CNN3D [1]	$\underline{49.28}{\pm0.93}$	$71.13{\pm}0.62$	61.08 ± 0.60
	$\mathbf{CT} ext{-}\mathbf{Scroll}$ [11]	$48.55{\pm0.54}$	$\underline{71.21}{\pm0.37}$	63.02 ± 0.93
	CT-Graph	49.52±0.76	72.18 ± 0.29	62.60 ± 0.52

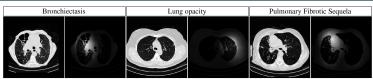
Quantitative results on the multi-label anomaly classification task.

Best results, second best. Metrics are reported across 5 runs.



Anomalies with highest improvement in F1-Score over baselines (left) and robustness to patient body z-axis translation (right).

Qualitative results



GradCAM activation maps extracted from the 2D ResNet module.

Ablation study

Topology	Module	F1-Score	AUROC	Accuracy
Fully connected	Graph Attention	53.72 ± 0.34	81.56±0.03	78.04±0.31
	Graph Conv.	$53.73{\scriptstyle\pm0.36}$	$81.99{\scriptstyle\pm0.40}$	$78.15{\scriptstyle\pm0.31}$
	Spectral Conv.	$\underline{54.40} {\pm} 0.15$	$\underline{82.34} {\pm} 0.12$	$\underline{79.01} {\pm} 0.55$
	Graph Attention	$54.06{\scriptstyle\pm0.19}$	$82.22{\pm0.05}$	$78.59{\scriptstyle\pm0.25}$
Sparse	Graph Conv.	$54.16{\scriptstyle\pm0.24}$	$82.33{\scriptstyle\pm0.18}$	$78.68{\scriptstyle\pm0.52}$
	Spectral Conv.	54.41 ± 0.12	82.47 ± 0.26	79.12 ± 0.53

Impact of graph topology on different convolutional operators.

Discussion and acknowledgments

Future work may include 1) multi-view modeling with coronal and sagittal planes, and 2) an anatomy-driven graph construction.

We acknowledge the MICCAI Student Board, the program committee, and the anonymous EMERGE Workshop reviewers.

